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Abstract—New methods of approximation of step functions with an estimation of the error of 

the approximation are suggested. The suggested methods do not have any of the disadvantages of 

traditional approximations of step functions by means of Fourier series and can be used in 

problems of mathematical modeling of a wide range of processes and systems. 
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1. INTRODUCTION 

 

Step functions are widely applied in various areas of scientific research. Technical and 

mathematical disciplines, such as automatic control theory, electrical and radio engineering, 

information and signal transmission theory, equations of mathematical physics, theory of 

vibrations, and differential equations are traditional fields of application [1–3]. 

Systems with step parameters and functions are considered highly nonlinear structures to 

emphasize the complexity of obtaining solutions for such structures. Despite the simplicity of 

step functions in segments, the construction of solutions in problems with step functions on the 

whole domain of definition requires using special mathematical methods, such as the alignment 

method [4] with the coordination of the solution by segments and switching surfaces. Generally, 

application of the alignment method requires overcoming substantial mathematical difficulties, 

and intricate solutions represented by complex expressions are obtained rather often. 

 

In many cases, researchers rely upon approximation methods using Fourier series 
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, where )(xSn  is the partial sum of the Fourier series. It is how Gibbs’ phenomenon shows itself 

[5]. Thus, in the case of a function 
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the point mx / , where 2[( 1) / 2]m n  , and [ ]A  is the integral part of the number A , is 

the maximum point of the partial sum )( 0fSn  of the trigonometric Fourier series [6] with 
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i.e., the absolute error value 
0 0( / ) lim ( , / ) 0.n

n
f m S f m 


   It should be noted that 
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mx  . 

The graph of the partial sum )( 020 fS of the trigonometric series on the interval ] ,[-  , 

which illustrates the presence of the Gibbs phenomenon is presented in Fig. 1. 

 

 
Fig. 1. Presence of the Gibbs phenomenon 

 

What is unpleasant in this case is that the Gibbs effect is generic and is present for any 

function  ],[2 baLf  , which has limited variation on the interval ],[ ba , with isolated 

discontinuity point ),(0 bax  . The following condition is fulfilled for such functions [6] 
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We show that absolute )(x  and relative )(x  errors of approximation in the 

vicinity of discontinuity points may be as large as we please. In fact, 
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The function )(d  is an infinitely large value, as 
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The proof is identical for the relative error  )(/)()( xfxx  . Moreover, even when 

Rd  )0( d  is fixed for any 0M , the function ],[)( 2 baLxf   may be selected in such a 

way that Mxfdxdx  )0(/),0(),0( 000 . The function with 

0)0(,/),0()0( 000  xfMdxxf  may be taken as an example for this case. 
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It should be noted that it is not necessary for the Fourier series to converge at each point even on 

the set of continuous functions ],[ С , which is commonly known. 

The presence of the Gibbs phenomenon leads to extremely negative consequences of the 

use of the partial sum of a trigonometric series as an approximating function in fields such as 

radio engineering and signal transmission. 

 

2. DESCRIPTION OF THE METHOD 

 

In order to eliminate the mentioned disadvantages, new methods of approximation of step 

functions based on the use of trigonometric expressions represented by recursive functions are 

suggested in the present paper. 

For example, consider the step function (1) in more detail. This function is often used as an 

example of the application of Fourier series, and, therefore, it is convenient to take this function 

for comparative analysis of a traditional Fourier series expansion and the suggested method. 

Expansion of (1) into Fourier series has all the above mentioned disadvantages. In order to 

eliminate them, it is proposed to approximate the initial step function by a sequence of recursive 

periodic functions 

    ],[1;sin)(1,)(1)2/(sin)()(   Сnxxfxnfxnf xnf N           (2) 

Graphs of the initial function (a thickened line) and its five successive approximations for 

this case are presented in Fig. 2. It can be seen that, even when n values are relatively small in 

the iterative procedure (2), the graph of the approximating functions approximates the initial 

function (1) rather well. In addition, approximating functions obtained using the suggested 

method do not have any of the disadvantages of Fourier series expansion. There is absolutely no 

sign of the Gibbs phenomenon. 

 

 
Fig.2 Graphs of the initial function and its successive approximation 

 

Certain peculiarities of the proposed approximating iterative procedure are to be 

mentioned. 

It should be noted that functions )(xfn  and )(0 xf  are uneven and periodic ones with a 

period of 2 . Functions )2/( xfn  and )2/(0 xf  are even and periodic. Therefore, it is 

sufficient to consider the sequence of approximating functions (2) on the interval   2/,0  . 

Let   ]2/,0[)( 2  Lxfn  and ]2/,0[)( 20 Lxf . As 
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)(xfn  on the interval ]2/,0[  ), then, a subsequence converging at each point of ]2/,0[   to a 

certain function f  with n
n

fVarfVar
2/

0

___2/

0
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  may be extracted from the sequence  )(xfn  based 

on Helly’s theorem. The possibility of taking the initial function )(0 xf  as such function  will 

be shown below. 

Theorem 1. A sequence of functions  )(xnf  converges to the initial function  )(0 xf , with 

the convergence being point -by-point, though not uniform. 
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uniform, as the function )(0 xf   is not continuous on the interval  2/,0  .  

Theorem 2. The sequence of approximating functions )(xnf  converges along the norm 

towards the initial function )(0 xf   in Banach 1[0, / 2]L   and Hilbert spaces of measurable 

functions 2[0, / 2]L  . 

Proof. We introduce the sequence of functions 
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that the measure of the set of discontinuity points of the function )(0 xf  is zero. 
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Similarly it may be proved that the sequence )(xfn  converges along the norm towards the 

function )(0 xf  in the space ]2/,0[2 L .  

Thus, the sequence of approximating functions )(xfn  in spaces ],[1 L  and  ],[2 L is 

fundamental. Whereas, the sequence )(xfn  is not fundamental in the space  ],[ C . 

The number 2/  was used in the sequence of approximating functions (3) as a constant 

factor; however, it is possible to take another factor, which may be variable as well. Cosine and 

f
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other trigonometric functions and their combinations may be used instead of sine in the 

suggested method of approximation. For example, if we use the sequence of recursive functions  

 1 1( ) ( ) cos( ( )), ( ) ( / 2) sin( ( )), ( ) , 1 [ , ],n n n n nf x f x x x x x x n N С      

         

we may approximate short-term impulses. The graph of one function from such sequence is 

presented in Fig. 3. 

 
Fig. 3. Graph of the analytical function that approximates short-term pulses 

 

These functions may be used for mathematical models describing the transmission of 

short-term signals, mechanical systems with shock interactions, etc. It should be noted that, 

despite the impulse (highly nonlinear) shape of graphs of such functions, they are continuous 

analytical functions and tolerate the application of analytical methods. The error of the 

approximation in spaces ],[1 L  and ],[2 L  may be as small as we please in these case. 

We return to the sequence of approximating functions (2). The function  )(1 xf  will be 

called the initial function (or angle one). We may use another function (not necessarily a periodic 

one) instead of sine as the initial function. It should be noted that, when iterative procedure (2) is 

used and given condition 2)(1 xf , we obtain ))(1sign()(lim xfxnf
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approximate any step function. In fact, we will take the initial function written as  
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We obtain )/()();/(2 122121 xxxxbxxa   based on the condition 
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for these values of coefficients a  and b  converges to the step function )(xf . Then, any step 

function with values ih i on intervals ),( 21 ii xx  may be approximated by the sum of identical 

sequences  n

1

f (x) .
k

i
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When we considered approximation of the step function )(xf  (3), we assumed that its 

position and height are precisely known. In actual problems parameters are usually set 

approximately. Let, for example, the initial parameters be set with absolute errors  

),0[ˆ),,0[ˆ),,0[ˆ 2221111 hhh-hxxxxxxxx 2
  , where 

1 1 2 2sup , sup , sup ,x x x x h h             hxx ˆ,ˆ,ˆ 21 are approximated values of the 

parameters. We consider step function (3) on the interval ],[ dc , for which 

1 1 2 2[ , ] [ , ].x x x x c d      In this case, we obtain the following estimated absolute errors 

of approximation with respect to the norm in spaces 
1 2[ , ], [ , ]L c d L c d  and [ , ]M c d  
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respectively, with ],[ dcM  being the set of functions with metric 
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It can be seen from the obtained estimations that the error of approximation does not 

accumulate, which is a positive aspect of the suggested method. 

As in practice we usually only know the approximate parameter values and measurement 

errors, it is more convenient to express the upper bound estimates for the absolute error of 

approximation as follows: 
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We return to (1) and its approximation using (2) in the space of limited functions ],0[ М . 

Let ]1,0[)()(0  xfxf n  be the absolute error of approximation. We write down the 

sequence 











12maxmax
)2()1(:],0[2,1

xxrr
xxf

nn
n nfxx

 of maximum metrics. Based on the 

equation 1)(xnf , we find that this sequence may be represented as 

 Nnnn   1,1,arcsin)/2(,arcsin2 11 -nrr nn . Similarly to the proof of 

the theorem 1, it may be proved that  







  

 ,0,0

],1,0(,
)()( rr n n

 

with convergence on the interval ]1,0[  being point-by -point without being uniform. It is 

important to mention that the sequence }{ nr  converges to the step function as well. 

The graphs of several of the initial functions from the sequence )(nr are presented in Fig. 

4. It can be seen from Fig. 4 that the length of the interval on which the error of approximation 

does not exceed   rises sharply when n  is increased in the area of rather small values of the 

error  . This proves the rapid convergence of the suggested method and is its positive 

peculiarity. 

In order to quantitatively estimate the change in the length of this interval, we deduce the 

approximate dependence for the function  1),(  nrnrnr . To do this, we use the 

relationship )1(21 nxnxnrnr  , where  1)/2(arcsin  nxnx  ,  )1arcsin(1 x . 
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into the Maclaurin series and consider that 1nx  values are rather small, we obtain 

approximately the following formula: 1)2()/2(1  nxnrnr . Then 
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Fig. 4. Lengths of intervals with the error of approximation not exceeding    

 

We indicate several properties of the suggested approximation (2). 

Property 1. The maximum difference in lengths of intervals 1 nrnr  does not depend on 

n  and is obtained using the relationship 
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The points 2/121  xnxnx   are minimum points, at which  01  nrnr . 

We also obtain 01  nrnr  in the case of 1 . The points 1)4/2(1  nx  are 

maximum points and do not depend on n . Then, we obtain 
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Property 2. The maximum difference in the values of functions x)nfx)nf (1(    does not 

depend on n  and  is obtained using the relationship 
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The proof is similar to the one for property 1. It is also indicated that 

211,0))(1)((
],0[

max 


xnfxnf
x

for use as a reference. 

Property 2 shows that the sequence of approximating functions )(xfn  (2) is not Cauchy 

convergent; i.e., it is not fundamental, as 
  nmnn ,0 N , which is 
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. The number 0.1 may be taken as  , for example, given that 

2,1   nnnm . 

The obtained relationships may be used to estimate errors of approximation in the solution 

of the applied problems. 
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3. EXAMPLES OF APPLICATION 

 

The sequence of sine mechanisms may act as a mechanical analog of the suggested 

approximations [7].  For example, the sequence of sine mechanisms in a position that 

corresponds to approximation (3) is presented in Fig. 5. Here, (1) represents the drive shaft; (2) 

represents the crank; (3) is the slide block; (4) is the link; (5) represents the rack; and (6) is the 

gear wheel. Then, the sequence of elements is repeated (it may be repeated several times). 

Element 7 corresponds to the output element, which may be connected to the drive shaft through 

the pinion. 

 
Fig. 5. Mechanical analog of the approximation of a step function 

 

The mechanism presented in Fig. 5 transforms the uniform rotational motion of drive shaft 

1 into the intermittent reciprocal or vibrational motion of the output element (with any degree of 

accuracy). In addition, the different relative positions of the cranks and the different relationships 

of the sizes of the crank and gear wheels make it possible to simulate various laws of motion of 

the output element that correspond to the considered approximations of the step functions 

(discontinuous motions, impulsive motions, etc.). Such a mechanism may be applied, for 

example, as transport mechanism in tape drive systems to provide a higher quality of the 

execution of the process. It is also possible to apply such a mechanism in pulse variators to 

achieve a more uniform motion of the output drive shaft, as the vibrational processes occur in 

accordance with the curves composed of the segments being approximated to a constant, 

rather than with a sine wave. 

The suggested method of approximation makes it possible to obtain functions which may 

be applied, for example, in the design and manufacturing of gear wheels and spline joints. The 

result of the construction of gear profile in MathCAD software is presented in Fig. 6. The 

function ))sin(2sin(()(  n)aAr π/ , where A  is the pitch circle radius, a  is the tooth 

point height, n  is the number of teeth, and r  and   are polar radius and polar angle, 

respectively, was taken as a basis for the construction of the profile. 

When we change the number of nested trigonometric functions used for approximation and 

vary their parameters, we may get gear profiles and spline joints with enhanced reliability in 

comparison with evolvent ones, which, in contrast with rectangular splines, for example, have no 

significant stress concentrators. 

We consider one more example of the application of the developed methods of 

approximation. The optical installation for sound reconstruction from worn and damaged 

records, which makes it possible to obtain electronic profiles of sound carrying media via a 

noncontact method, was developed in the United States (Figs. 7a, 7b) [8]. 
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Several tens (sometimes even hundreds) of thousands of electronic radial profiles of each 

sound carrying medium being reconstructed are acquired using the optical installation. 

Approximation, mostly the one using linear splines (Fig. 7c), is used for the reconstruction of 

electronic profiles. The accuracy of the approximation leaves much to be desired in this case, 

whereas the electronic analog of the initial profile may be reconstructed with a rather high degree 

of accuracy using the methods suggested in the present paper (Fig. 7e). 

 

 
Fig.6. Construction of a gear profile using the approximation of step functions 

 

The black dots in Fig. 7d indicate the measurements of the radial profile of sound tracks 

using the optical installation. An enlarged image of Fig. 7d is presented in Fig. 7e, where the 

white line corresponds to an approximation of the profile using the suggested technique. 

 
Fig. 7. Profiles of sound tracks and their application 
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The described methods of approximation make it possible to automate the process of the 

reconstruction of electronic sound tracks, which is very important for the execution of the 

process with a high performance level, taking into consideration the significant number (tens and 

hundreds of thousands) of electronic radial profiles. 

The suggested methods of approximation may also be used in the mathematical modeling 

of biomedical processes. For example, a fragment of a cardiogram is presented in Fig. 8. 

Approximation is carried out for one of the graphs of the cardiogram using the proposed 

procedure. The graphic results of the approximation by means of one of the developed functions 

are presented in an enlarged form in the middle part of the figure (Fig. 8a), where the 

approximating function is superimposed on the graph of the cardiogram. In order to better 

understand the graph of the approximating function, this graph in Fig. 8b is presented in a 

position shifted with respect to the cardiogram. It can be seen that the approximation is quite 

accurate. Similar approximations may be carried out for other graphs of the cardiogram as well. 

 

 
 

Fig. 8. Approximation of a fragment of the cardiogram 

 

The possibility of using the proposed methods for approximation of nonperiodic step 

functions should also be noted. The period of approximating functions in this case should be 

rather large covering the area of possible values of the argument of the function being 

approximated of the actual process being investigated. Such an approximation may be used in 

the modeling of, for example, technical systems with dry friction parameters and inertial 

transformer dynamics with an alternating -sign moment of resistance. 

 

4. NUMERICAL TESTING 

 

Numerical testing of the proposed approximating procedure will be carried out using the 

example of investigation of dynamics of an inertial impulse stepless gear. It is known [9] that 

weak elements (free wheel mechanisms) may be excluded from the construction of the inertial 
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impulse steplsess gear based on planetary gear with unbalanced satellites under condition that the 

moment of resistance affecting the drive shaft has an alternating sign. The gear’s dynamics may 

be described by the highly nonlinear second-order differential equation 

,)( 2
3

2
21 СМААА 



  

 

where 

),(,sin,sin,cos 3322111   tqaAaAbBA  

qaabB ,,,, 3211  are constant coefficients, including the gear parameters, 

01 )sign( MβMMC 


 is the moment of resistance affecting the drive shaft 

),,( 10 constMM   

const  is the angular velocity of the driveshaft,  

  is the rotation angle of the driven shaft, and 
dt

d
  is the operator of derivation with respect 

to time t . 

The sign function )sign(


β  is highly nonlinear, which complicates carrying out analytical 

investigations  of the dynamics of the inertial impulse gear. In addition, this function is not 

periodic. We approximate the  sign function using the suggested methods (2) by, for example, an 

analytical function written as 
• •

4( ) ( /10).sign f   It should be noted that we take relatively 

small  4n  for the approximation, leaving substantial opportunities for a reduction in the 

approximation error. 

For the sake of comparison, we carry out a numerical solution of the differential motion 

equation with the sign and the approximating functions for particular examples of gears 

according to the Runge–Kutta method. Phase trajectories on phase plane ),(


  with access to a 

periodic solution are presented in Fig. 9. Here, the solid line indicates the solution obtained with 

the gear with a discontinuous sign function used in the mathematical model, while the dotted line 

represents the solution obtained using an analytical approximation. The thickened line in Fig. 9 

corresponds to the periodic solution. 

 
Fig. 9. Phase trajectories in the case of use of the sign function and its approximation  
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It can be seen from the figure that the error of the results is not large, which shows good 

convergence of the suggested approximating procedures. Furthermore, the approximation error 

may be reduced to as small value as desired through an increase in the number of nested 

functions. 

The considered examples are taken from various areas and are not single ones for the 

application of the suggested methods of approximation. Therefore, sufficient universality of 

these methods may be stated. 

The described methods of approximation do not have any of the disadvantages of 

expansions of functions into Fourier series and may find wide use in the solution of applied 

problems. It should also be noted that the proposed approximating functions are continuous and 

analytical ones. They reflect actual processes to a larger extent than step functions, as even jump 

processes occur in reality within short, but not zero, time intervals. 
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