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Abstract
The multi resolution analysis (MRA) of the wavelet theory defines a sequence of close
subspaces {V}jez with Vj ¢ Vju1 L%(R). The trigonometric functions sin and cos are not
quadratic integrable on R. However we can express them with bases functions from V; by
using the Shannon wavelet.

Introduction
In this article we use the Shannon wavelet. For the approximation using the space V; we even
can use functions that are not quadratic integrable on R if we only need an approximation on a
finite interval | as in practical case. Considering the interval I, we could use the function 1,f
instead of f, if f is quadratic integrable on I (with the indicator function 1) and then 1, is in

L(R). But that leads often to worse approximations (see [5], [6] and [7]). For trigonometric

functions like sin and cos (or ) we can calculate directly the bases coefficients and under
certain conditions we can detect a superposition with that trigonometric functions like with
the Fourier analysis.

With the_ sca!ing function ¢ of the MRA we get an orthonormal basis of V; with
gix(t) = 22 A2t - k). So we get the orthogonal projection from a £%(R) function f in Vj with

()= 60, (D) with £ =(F.0,,)= [ (1), (1)t .

In the MRA the spaces V; are closed subspaces of L2(R). If f is not quadratic integrabel on R
we say that we can "identify" f with V;, instead of f is in Vj, if we can express f with the
orthonormal basis of V;.

Example:

Let be
f(t) =e™* +0.05sin(8t) .

We show the graph of f together with the approximation f;:
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Figure 1

With the function d; we can “identify” the superposition term 0.05sin(8t), what we can see
graphically with the graph of d; and soon theoretically.

0.04,

0.02|

Figure 2

sin(at) and V;

If we use the Shannon wavelet, f is in V; if supp F = [-2).7, 21.7] (or if supp F < [-2'-7; 2)-A]).
If f is in detail space W; then f is in Vj.; but not in Vj, because of V,, =V, ®W;. So if f is
quadratic integrable on R then f is in W; if supp F ¢ [-2"'.7, -2 0) U (27, 21 -A].

In the example above we saw, that we could recognize if a function f is superposed with a
sinus function, for example f(t) = g(t) + c-sin(at), when we use the Shannon wavelet in a

MRA.
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The reason is: The Fourier transform of h(t) = sin(at) is

H(w) = 1 Th(t)-e‘iwtdt:i«/n/Z-(S(w+a)—8(w—a)),

Vr -

with the Dirac delta distribution 6 (using for transformation and back-transformation the

factor 1/\/%). So the Fourier transform of h(t) = sin(at) (from now we choose only a > 0) is
not a function and h is not quadratic integrable on R but we could show that we get for the
basis coefficients in Fourier space <H,@> = 22h(k/2)) for a < 27 and we can show even
directly that _ _ _ _

fd = <h, 4> = 2"%n(k/2)) fora < 2.7

although he £*(R) (for a = 2!-x all fJ vanish). Here we can use the equations

et g(tydt =1, (a)
with the indicator function 1 and
H 1 irat —i-at
sin(a-t)=—(e"™ —e™"").
2i

We can show, that the integral above exists and so we would get f} = <h, 4,> = 2¥?h(k/2))
fora<2.x.

Example:
Here are graphs of h - hy,; with

m

h, (t)= > 27" -h(k/2")-¢;,(t)

k=—m

and h(t) = sin(at) (j = 1, a = 4, left for m = 40 and right for m = 80):
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Figure 3

If we would apply the Shannon theorem on h then the condition “eL*(R)L*[R)” of the
theorem is not met but we can calculate the coefficients of that sinc-series ¢, and we would

get ¢, = fJ, too, if we set Q =277 (for the meaning of Q see remark at the end of the article).
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The angular frequency a must be less than 2’7 to identify h with V;. So we could identify a
superposition term sin(at) (or cos(at)) with the detail space W; if 2'.7< a < 2717 In the first
example a was 8, so we could identify the sinus term with d; € W, because of 2.7< 8 < 4.r.
For the case that a = 2'-7: A superposition with sin(at) could not be identified with V; but with
Vj+1 50 sin(2-7) could be identified with W;.

Here are graphs (left h and hyj and right h - hyj) form =40, j=0and a = 1, 2, 3, 4. We see
that sin(4t) could not be identified with Vj.
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If a is bigger then we need a bigger m, that’s what we see with the graph of sin(3t). When we
choose m = 100 then we get the following graphs:
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Figure 4

- 48 -



Journal of Approximation Theory and Applied Mathematics, 2014 Vol. 3
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Figure 5

Here are the graphs (left h and hyj and right h - hy,j) form=40,j=2anda=7,8, ..., 13. We
see that sin(13t) could not be identified with V.

a=7

Figure 6a

- 49 -



Journal of Approximation Theory and Applied Mathematics, 2014 Vol. 3

Figure 6b

Figure 7

If we use a function of type f(t) = g(t) + c-sin(at) then it could be possible that we cannot
identify the sinus term good in Wj also 2.7 <a < 2*1.7when the orthogonal projection of g in
W; has a big amount (or when the length | is too small).

Example:
For example if f(t) = e (which is in £*(R)) then the graph of dy is:
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0.02

0.01

3 -2 -1 1 2 3
— 01 L
0.02|

Figure 8

So the orthogonal projection dy of f in Wy is not very small. f is not band-limited but the
Fourier transform of f is

1 214
Flo)=——%=e"

(o) 7
and for example F(4x) ~ 5.06 - 10™%. So with growing w the function values F(w) becomes
“fast” nearly zero as well the detail functions d; with growing j. That’s what we see when we
consider the approximation error in Fourier space with the difference of f and f; (as the

orthogonal projection of f in V). Here we could calculate the L(I) norm Hf =tz with
) - fit) = —— T F(o)e™do——— zjnF(oa)ei“"d(o
: NS NTRS
1 —2ig 1 )
=— |F(0)e""do+—— | F(w)e™'do
= j (o) mj ()
if we consider the Interval I. For I = R (and on R quadratic integrabel f) we get with the

equation from Parseval:

-1,

. =\/_TEF(m)|2d(o+ ]O F(o) do

—0 2iq
So we see that it is important for a good approximation with small j how “fast” |F(«)|
becomes small with increasing |w|. If the function f is continuous we could also use the
maximum norm.

Analogous we get for | = R:

o,

—2in 20y
Lz:\/ [[F(o) do+ [IF(o) do
2l

—2“11'[
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Example:
Now we consider the function f(t)= e +0.06 sin(4t)+0.02sin(10t ), with the Graph:

2 3

Figure 9

For the following numerical integrations in order to calculate d; and fj we used the interval
| = [-30, 30]. We see no differences between the graph of d; and 0.02 sin(10t):

Figure 10

But between the graph of dy and 0.06sin(4t) (which is dashed) we see a difference:

Figure 11
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In d; the part of the orthogonal projection of e does not have a big amount, but in do.

Here is the graph of f; and f (f is dashed):

Figure 12

Here is the graph of fy and f (f is dashed):

Figure 13
Finally here is the graph of the Fourier transform of 1,(t)-0.06sin(4t) divided by i (for

| = [-30,30]) which is concentrated at the points w = +4 (what is seen even better the bigger
the interval I is):
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Figure 14

Remark:
We can also show with a different path (what we know from above), that for example
sin(a-m-t) can be expressed through the bases coefficients of V;. Here we use the often used

notation of the Shannon theorem. In V; we have Q =2/ -,
If the Fourier transform F of f has compact support (supp F ¢ [-Q, Q]) and fe£(R)1L*(R)
than

f (t)= f,(t) (foralmost all real t) with

~ k-m) sin(Q-t—k-m) _ k) sin(Q-t)-(-1)"
fs(t)_zf(gj Q-t—k-= _Zf(QJ Q-t—k-=

kez kez

o e k-n- (—1)k
=sin(Q-t) éf[ 5 ) 0 K

That’s Shannon’s theorem.

We consider f(t) = sin(a-n-t) and we set Q=2-a-n. If we set Q=a-n, we would get 0.
We could choose other Q >a- =, but for Q=2-a-nwe see easily that f can be expressed

with the Shannon series, even f is not in Z{R)/7£%(R), what is an assumption of the Shannon

theorem. With that choice of Q the coefficients f(%} e {-1,0, 1}.

fs(t)ZSin(Z-a-n-t)-Zsin(a.n.2k'nj (-1)"
TT

= a-n) 2-a-m-t-k-m

_sin(2-a-n-t)_zsin(k-nj_ (-1)¥
- n = 2 ) 2-a-t-k
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Here is:

0 if kiseven
sin[k'T’c ={sign(k) if |k|=159,..
—sign(k) if |k|=3711,...

So we get:

_sin(2-a-m-t) (-1)**
(1) = m éz-a-t—(zku)

_sin(2-a-m-t) 2.y (1) (2k +1)
- n S (2k+1)° —(2-a-t)

=n/2-sec(a-mt)

=sin(2-a-n-t)-sec(a-n-t)-1/2

=sin(a-n-t)= f(t)

References

[1] Ricardo Estrada (1995). Summability of cardinal series and of localized Fourier series.
Applicable Analysis: An International Journal

[2] J. R. Higgins (1985). Five short Stories about the Cardinal Series. American
Mathematical Society

[3] Qian, L. (2002). On the Regularized Whittaker-Koltel'nikov-Shannon Sampling Theorem.
Proceedings of the American Mathematical Society, VVol. 131, No. 4

[4] Schuchmann, M. (2012). Approximation and Collocation with Wavelets. Approximations
and Numerical Solving of ODEs, PDEs and IEs. Osnabriick: DAV

[5] M. Schuchmann, M. Rasguljajew (2013). An Approximation on a Compact Interval
Calculated with a Wavelet Collocation Method can Lead to Much Better Results than other
Methods. Journal of Approximation Theory and Applied Mathematics (Vol. 1)

[6] M. Schuchmann, M. Rasguljajew (2013). Approximation of Non L%(R) Functions on a
Compact Interval with a Wavelet Base (2013, Vol. 2)

[7] M. Schuchmann, M. Rasguljajew; (2013). Error Estimations in an Approximation on a
Compact Interval with a Wavelet Bases. COMPUSOFT - An international journal of
advanced computer technology, Vol. 2, Issue 11, November 2013.

[8] J. M. Whittaker (1927). On the Cardinal Function of Interpolation Theory. Proceedings of
the Edinburgh Mathematical Society.

-55-



