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Abstract
The multi resolution analysis (MRA) of the wavelet theory defines a sequence of close 
subspaces {Vj}j Z with Vj  Vj+1  L2(R). The trigonometric functions sin and cos are not 
quadratic integrable on R.  However we can express them with bases functions from Vj by 
using the Shannon wavelet.

Introduction 
In this article we use the Shannon wavelet. For the approximation using the space Vj we even 
can use functions that are not quadratic integrable on R if we only need an approximation on a 
finite interval I as in practical case. Considering the interval I, we could use the function 1I f
instead of f, if f is quadratic integrable on I (with the indicator function 1) and then 1I f is in 

2(R). But that leads often to worse approximations (see [5], [6] and [7]). For trigonometric 
functions like sin and cos (or eia ) we can calculate directly the bases coefficients and under 
certain conditions we can detect a superposition with that trigonometric functions like with 
the Fourier analysis. 

With the scaling function of the MRA we get an orthonormal basis of Vj with                   
j,k(t) = 2j/2 (2jt - k). So we get the orthogonal projection from a 2(R) function f in Vj with 

)t(f)t(f k,j
k

j
kj  with dt)t()t(f,ff k,jk,j

j
k  . 

In the MRA the spaces Vj  are closed subspaces of L2(R). If f is not quadratic integrabel on R
we say that we can "identify" f with Vj, instead of f is in Vj, if we can express f with the 
orthonormal basis of Vj .

Example:

Let be 
 f(t) =

2te  + 0.05 sin(8t)  . 

We show the graph of f together with the approximation f1:
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Figure 1

With the function d1 we can “identify” the superposition term 0.05 sin(8t), what we can see 
graphically with the graph of d1 and soon theoretically. 
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sin(at) and Vj

If we use the Shannon wavelet, f is in Vj if supp F = [-2j , 2j ] (or if supp F  [-2j , 2j ]).
If f is in detail space Wj then f is in Vj+1 but not in Vj, because of jjj WVV 1 . So if f is 
quadratic integrable on R then f is in Wj if supp F   [-2j+1 , -2j )  (2j , 2j+1 ].

In the example above we saw, that we could recognize if a function f is superposed with a 
sinus function, for example f(t) = g(t) + c sin(at), when we use the Shannon wavelet in a 
MRA.
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The reason is: The Fourier transform of h(t) = sin(at) is

H( ) = dte)t(h ti

2
1  = )a()a(/i 2  ,

with the Dirac delta distribution  (using for transformation and back-transformation the 
factor 1/ 2 ). So the Fourier transform of  h(t) = sin(at) (from now we choose only a > 0) is 
not a function and h is not quadratic integrable on R but we could show that we get for the 
basis coefficients in Fourier space <H, j,k> = 2-j/2h(k/2j) for a < 2j  and we can show even 
directly that  

fk
j = <h, j,k> = 2-j/2h(k/2j) for a < 2j

although h 2(R)  (for a = 2j  all fk
j vanish). Here we can use the equations 

)a(dt)t(e ],[
tai 1

with the indicator function 1 and

)ee(
i

)tasin( taitai

2
1  . 

We can show, that the integral above exists and so we would get fk
j = <h, j,k> = 2-j/2h(k/2j)

for a < 2j .

Example:
Here are graphs of h - hm,j with  

)t()/k(h)t(h k,j

m

mk

j/j
j,m 22 2

and h(t) = sin(at) (j = 1, a = 4, left for m = 40 and right for m = 80): 
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Figure 3 

If we would apply the Shannon theorem on h then the condition “ L1(R) L2(R)” of the 
theorem is not met but we can calculate the coefficients of that sinc-series ck and we would 
get ck = fk

j, too, if we set j2  (for the meaning of  see remark at the end of the article).  
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The angular frequency a must be less than 2j  to identify h with Vj. So we could identify a 
superposition term sin(at) (or cos(at)) with the detail space Wj if 2j  < a < 2j+1  . In the first 
example a was 8, so we could identify the sinus term with d1  W1 because of 2  < 8 < 4 .
For the case that a = 2j : A superposition with sin(at) could not be identified with Vj but with 
Vj+1 so sin(2j ) could be identified with Wj.
 
Here are graphs (left h and hm,j and right h - hm,j) for m = 40, j = 0 and a = 1, 2, 3, 4. We see 
that sin(4t) could not be identified with V0.

a = 1: 
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Figure 4 

If a is bigger then we need a bigger m, that’s what we see with the graph of sin(3t). When we 
choose m = 100 then we get the following graphs:
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a = 3: 
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Here are the graphs (left h and hm,j and right h - hm,j) for m = 40, j = 2 and a = 7, 8, … , 13. We 
see that sin(13t) could not be identified with V2.
 

a = 7 
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Figure 6a
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a = 10: 
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a = 12: 
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If we use a function of type f(t) = g(t) + c sin(at) then it could be possible that we cannot 
identify the sinus term good in Wj also 2j  a < 2j+1  when the orthogonal projection of g in 
Wj has a big amount (or when the length I is too small).  

Example:
For example if f(t) =

2te  (which is in 2(R)) then the graph of d0 is: 
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So the orthogonal projection d0 of f in W0 is not very small. f is not band-limited but the 
Fourier transform of f is

42

2
1 /e)(F

and for example F(4 )  5.06  10-18. So with growing  the function values F( ) becomes 
“fast” nearly zero as well the detail functions dj with growing j. That’s what we see when we 
consider the approximation error in Fourier space with the difference of f and fj (as the 
orthogonal projection of f in Vj). Here we could calculate the L2(I) norm 

)I(Ljff 2  with 
 

                 f(t) - fj(t) =  
j

j

de)(Fde)(F titi
2

22
1

2
1

j

j

de)(Fde)(F titi

2

2

2
1

2
1

if we consider the Interval I. For I = R (and on R quadratic integrabel f) we get with the 
equation from Parseval: 

2Ljff
j

j

d)(Fd)(F
2

2
2

2

So we see that it is important for a good approximation with small j how “fast” |F( )| 
becomes small with increasing | |. If the function f is continuous we could also use the 
maximum norm. 

Analogous we get for I = R:

2Ljd
1

1

2

2

2
2

2

2
j

j

j

j

d)(Fd)(F
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Example:
Now we consider the function f(t)= )tsin(.)tsin(.e t 100204060

2

, with the Graph: 

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1.0

Figure 9

For the following numerical integrations in order to calculate dj and fj we used the interval      
I = [-30, 30]. We see no differences between the graph of d1 and 0.02 sin(10t):
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But between the graph of d0 and 0.06sin(4t) (which is dashed) we see a difference:   
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In d1 the part of the orthogonal projection of 
2te  does not have a big amount, but in d0.

Here is the graph of f1 and f (f is dashed): 
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Figure 12

Here is the graph of f0 and f (f is dashed): 
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Figure 13

Finally here is the graph of the Fourier transform of 1I(t) 0.06sin(4t) divided by i (for              
I = [-30,30]) which is concentrated at the points  = 4 (what is seen even better the bigger 
the interval I is): 
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Remark:
We can also show with a different path (what we know from above), that for example 
sin( )ta  can be expressed through the bases coefficients of Vj. Here we use the often used 
notation of the Shannon theorem. In Vj we have j2 .  

If the Fourier transform F of f has compact support (supp F  [- , ]) and f L(R) L 2(R)

than

)t(f)t(f s   (for almost all real t) with 

Zk

k

Zk
s kt

)()tsin(kf
kt

)ktsin(kf)t(f 1

Zk

k

kt
)(kf)tsin( 1

That’s Shannon’s theorem. 

We consider f(t) = sin( )ta  and we set a2 . If we set a , we would get 0. 
We could choose other a , but for a2 we see easily that f can be expressed 

with the Shannon series, even f is not in L(R) L 2(R), what is an assumption of the Shannon 

theorem. With that choice of  the coefficients kf  {-1, 0, 1}.

Zk

k

s kta
)(

a
kasin)tasin()t(f

2
1

2
2

Zk

k

kta
)(ksin)tasin(

2
1

2
2
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Here is: 

            

,...,,kif)k(sign

,...,,kif)k(sign
eveniskif

ksin

1173

951
0

2

So we get: 

Zk

k

s )k(ta
)()tasin()t(f

122
12 1

       

         

)tasec(/

Nk

k

)ta()k(
)k()()tasin(

2

22

1

0
212

12122

         212 /)tasec()tasin(

         )t(f)tasin(
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