Identifying a Superposition with Trigonometric Functions by Applying a MRA with the Shannon Wavelet

M. Schuchmann and M. Rasguljajew from the Darmstadt University of Applied Sciences

Abstract

The multi resolution analysis (MRA) of the wavelet theory defines a sequence of close subspaces $\{V_j\}_{j \in \mathbb{Z}}$ with $V_j \subset V_{j+1} \subset L^2(R)$. The trigonometric functions sin and cos are not quadratic integrable on R. However we can express them with bases functions from V_j by using the Shannon wavelet.

Introduction

In this article we use the Shannon wavelet. For the approximation using the space V_j we even can use functions that are not quadratic integrable on R if we only need an approximation on a finite interval I as in practical case. Considering the interval I, we could use the function $I_I f$ instead of f, if f is quadratic integrable on I (with the indicator function 1) and then $I_I f$ is in $\mathcal{L}^2(R)$. But that leads often to worse approximations (see [5], [6] and [7]). For trigonometric functions like sin and cos (or e^{ia}) we can calculate directly the bases coefficients and under certain conditions we can detect a superposition with that trigonometric functions like with the Fourier analysis.

With the scaling function ϕ of the MRA we get an orthonormal basis of V_j with $\phi_{j,k}(t) = 2^{j/2} \phi(2^j t - k)$. So we get the orthogonal projection from a $\mathcal{L}^2(R)$ function *f* in V_j with

$$f_{j}(t) = \sum_{k} f_{k}^{j} \phi_{j,k}(t) \text{ with } f_{k}^{j} = \left\langle f, \phi_{j,k} \right\rangle = \int_{-\infty}^{\infty} f(t) \cdot \overline{\phi_{j,k}(t)} dt$$

In the MRA the spaces V_j are closed subspaces of $L^2(R)$. If f is not quadratic integrabel on R we say that we can "identify" f with V_j , instead of f is in V_j , if we can express f with the orthonormal basis of V_j .

Example:

Let be

$$f(t) = e^{-t^2} + 0.05 \cdot \sin(8t) \; .$$

We show the graph of f together with the approximation f_i :

With the function d_1 we can "identify" the superposition term $0.05 \cdot sin(8t)$, what we can see graphically with the graph of d_1 and soon theoretically.

sin(at) and V_j

If we use the Shannon wavelet, f is in V_j if $supp F = [-2^j \cdot \pi, 2^j \cdot \pi]$ (or if $supp F \subseteq [-2^j \cdot \pi, 2^j \cdot \pi]$). If f is in detail space W_j then f is in V_{j+1} but not in V_j , because of $V_{j+1} = V_j \oplus W_j$. So if f is quadratic integrable on R then f is in W_j if $supp F \subset [-2^{j+1} \cdot \pi, -2^j \cdot \pi] \cup (2^j \cdot \pi, 2^{j+1} \cdot \pi]$.

In the example above we saw, that we could recognize if a function f is superposed with a sinus function, for example $f(t) = g(t) + c \cdot sin(at)$, when we use the Shannon wavelet in a MRA.

The reason is: The Fourier transform of h(t) = sin(at) is

$$H(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t) \cdot e^{-i\omega t} dt = i\sqrt{\pi/2} \cdot \left(\delta(\omega + a) - \delta(\omega - a)\right),$$

with the Dirac delta distribution δ (using for transformation and back-transformation the factor $1/\sqrt{2\pi}$). So the Fourier transform of h(t) = sin(at) (from now we choose only a > 0) is not a function and h is not quadratic integrable on R but we could show that we get for the basis coefficients in Fourier space $\langle H, \Phi_{j,k} \rangle = 2^{-j/2}h(k/2^j)$ for $a < 2^j \cdot \pi$ and we can show even directly that

$$f_k^J = \langle h, \phi_{j,k} \rangle = 2^{-j/2} h(k/2^J)$$
 for $a < 2^J \cdot \pi$

although $h \notin \mathcal{L}^2(R)$ (for $a = 2^j \cdot \pi$ all f_k^j vanish). Here we can use the equations

$$\int_{-\infty}^{\infty} e^{-i \cdot a \cdot t} \cdot \phi(t) dt = \mathbf{1}_{[-\pi,\pi]}(a)$$

with the indicator function 1 and

$$\sin(a \cdot t) = \frac{1}{2i} (e^{i \cdot a \cdot t} - e^{-i \cdot a \cdot t}) .$$

We can show, that the integral above exists and so we would get $f_k^j = \langle h, \phi_{j,k} \rangle = 2^{-j/2} h(k/2^j)$ for $a < 2^j \cdot \pi$.

Example:

Here are graphs of $h - h_{m,i}$ with

$$h_{m,j}(t) = \sum_{k=-m}^{m} 2^{-j/2} \cdot h(k/2^{j}) \cdot \phi_{j,k}(t)$$

and h(t) = sin(at) (j = 1, a = 4, left for m = 40 and right for m = 80):

If we would apply the Shannon theorem on *h* then the condition " $\in L^1(R) \cap L^2(R)$ " of the theorem is not met but we can calculate the coefficients of that sinc-series c_k and we would get $c_k = f_k^j$, too, if we set $\Omega = 2^j \cdot \pi$ (for the meaning of Ω see remark at the end of the article).

The angular frequency a must be less than $2^{j} \cdot \pi$ to identify *h* with V_{j} . So we could identify a superposition term sin(at) (or cos(at)) with the detail space W_{j} if $2^{j} \cdot \pi < a < 2^{j+1} \cdot \pi$. In the first example *a* was 8, so we could identify the sinus term with $d_{1} \in W_{1}$ because of $2 \cdot \pi < 8 < 4 \cdot \pi$. For the case that $a = 2^{j} \cdot \pi$: A superposition with sin(at) could not be identified with V_{j} but with V_{j+1} so $sin(2^{j} \cdot \pi)$ could be identified with W_{j} .

Here are graphs (left *h* and $h_{m,j}$ and right $h - h_{m,j}$) for m = 40, j = 0 and a = 1, 2, 3, 4. We see that sin(4t) could not be identified with V_0 .

If a is bigger then we need a bigger m, that's what we see with the graph of sin(3t). When we choose m = 100 then we get the following graphs:

Here are the graphs (left *h* and $h_{m,j}$ and right $h - h_{m,j}$) for m = 40, j = 2 and a = 7, 8, ..., 13. We see that sin(13t) could not be identified with V_2 .

If we use a function of type $f(t) = g(t) + c \cdot sin(at)$ then it could be possible that we cannot identify the sinus term good in W_j also $2^j \cdot \pi \le a < 2^{j+1} \cdot \pi$ when the orthogonal projection of g in W_j has a big amount (or when the length *I* is too small).

Example:

For example if $f(t) = e^{-t^2}$ (which is in $\mathcal{L}^2(R)$) then the graph of d_0 is:

So the orthogonal projection d_0 of f in W_0 is not very small. f is not band-limited but the Fourier transform of f is

$$F(\omega) = \frac{1}{\sqrt{2}} e^{-\omega^2/4}$$

and for example $F(4\pi) \approx 5.06 \cdot 10^{-18}$. So with growing ω the function values $F(\omega)$ becomes "fast" nearly zero as well the detail functions d_j with growing j. That's what we see when we consider the approximation error in Fourier space with the difference of f and f_j (as the orthogonal projection of f in V_j). Here we could calculate the $L^2(I)$ norm $||f - f_j||_{L^2(I)}$ with

$$f(t) - f_j(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega - \frac{1}{\sqrt{2\pi}} \int_{-2^j \pi}^{2^j \pi} F(\omega) e^{i\omega t} d\omega$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-2^j \pi} F(\omega) e^{i\omega t} d\omega + \frac{1}{\sqrt{2\pi}} \int_{2^j \pi}^{\infty} F(\omega) e^{i\omega t} d\omega$$

if we consider the Interval *I*. For I = R (and on *R* quadratic integrabel *f*) we get with the equation from Parseval:

$$\left\|f - f_{j}\right\|_{L^{2}} = \sqrt{\int_{-\infty}^{-2^{j}\pi} \left|F(\omega)\right|^{2} d\omega} + \int_{2^{j}\pi}^{\infty} \left|F(\omega)\right|^{2} d\omega$$

So we see that it is important for a good approximation with small *j* how "fast" $|F(\omega)|$ becomes small with increasing $|\omega|$. If the function *f* is continuous we could also use the maximum norm.

Analogous we get for I = R:

$$\left\|d_{j}\right\|_{L^{2}} = \sqrt{\int_{-2^{j+1}\pi}^{-2^{j}\pi} \left|F(\omega)\right|^{2} d\omega} + \int_{2^{j}\pi}^{2^{j+1}\pi} \left|F(\omega)\right|^{2} d\omega$$

Example:

Now we consider the function $f(t) = e^{-t^2} + 0.06 \sin(4t) + 0.02 \sin(10t)$, with the Graph:

For the following numerical integrations in order to calculate d_j and f_j we used the interval I = [-30, 30]. We see no differences between the graph of d_1 and 0.02 sin(10t):

But between the graph of d_0 and 0.06sin(4t) (which is dashed) we see a difference:

Figure 11

In d_1 the part of the orthogonal projection of e^{-t^2} does not have a big amount, but in d_0 . Here is the graph of f_1 and f (f is dashed):

Here is the graph of f_0 and f (f is dashed):

Finally here is the graph of the Fourier transform of $I_I(t) \cdot 0.06 \sin(4t)$ divided by *i* (for I = [-30,30]) which is concentrated at the points $\omega = \pm 4$ (what is seen even better the bigger the interval *I* is):

Remark:

We can also show with a different path (what we know from above), that for example $sin(a \cdot \pi \cdot t)$ can be expressed through the bases coefficients of V_j . Here we use the often used notation of the Shannon theorem. In V_j we have $\Omega = 2^j \cdot \pi$.

If the Fourier transform *F* of *f* has compact support (supp $F \subseteq [-\Omega, \Omega]$) and $f \in \mathcal{L}(R) \cap \mathcal{L}^2(R)$ than

 $f(t) = f_s(t)$ (for almost all real t) with

$$\begin{split} f_{s}(t) &= \sum_{k \in \mathbb{Z}} f\left(\frac{k \cdot \pi}{\Omega}\right) \cdot \frac{\sin(\Omega \cdot t - k \cdot \pi)}{\Omega \cdot t - k \cdot \pi} = \sum_{k \in \mathbb{Z}} f\left(\frac{k \cdot \pi}{\Omega}\right) \cdot \frac{\sin(\Omega \cdot t) \cdot (-1)^{k}}{\Omega \cdot t - k \cdot \pi} \\ &= \sin(\Omega \cdot t) \cdot \sum_{k \in \mathbb{Z}} f\left(\frac{k \cdot \pi}{\Omega}\right) \cdot \frac{(-1)^{k}}{\Omega \cdot t - k \cdot \pi} \end{split}$$

That's Shannon's theorem.

We consider $f(t) = sin(a \cdot \pi \cdot t)$ and we set $\Omega = 2 \cdot a \cdot \pi$. If we set $\Omega = a \cdot \pi$, we would get 0. We could choose other $\Omega > a \cdot \pi$, but for $\Omega = 2 \cdot a \cdot \pi$ we see easily that *f* can be expressed with the Shannon series, even *f* is not in $\mathcal{L}(R) \cap \mathcal{L}^2(R)$, what is an assumption of the Shannon theorem. With that choice of Ω the coefficients $f\left(\frac{k \cdot \pi}{\Omega}\right) \in \{-1, 0, 1\}$.

$$\begin{split} f_s(t) &= \sin(2 \cdot a \cdot \pi \cdot t) \cdot \sum_{k \in \mathbb{Z}} \sin\left(a \cdot \pi \cdot \frac{k \cdot \pi}{2 \cdot a \cdot \pi}\right) \cdot \frac{(-1)^k}{2 \cdot a \cdot \pi \cdot t - k \cdot \pi} \\ &= \frac{\sin(2 \cdot a \cdot \pi \cdot t)}{\pi} \cdot \sum_{k \in \mathbb{Z}} \sin\left(\frac{k \cdot \pi}{2}\right) \cdot \frac{(-1)^k}{2 \cdot a \cdot t - k} \end{split}$$

Here is:

$$sin\left(\frac{k \cdot \pi}{2}\right) = \begin{cases} 0 & if \quad k \text{ is even} \\ sign(k) & if \quad |k| = 1, 5, 9, \dots \\ -sign(k) & if \quad |k| = 3, 7, 11, \dots \end{cases}$$

So we get:

$$\begin{split} f_s(t) &= \frac{\sin(2 \cdot a \cdot \pi \cdot t)}{\pi} \cdot \sum_{k \in \mathbb{Z}} \frac{(-1)^{k+1}}{2 \cdot a \cdot t - (2k+1)} \\ &= \frac{\sin(2 \cdot a \cdot \pi \cdot t)}{\pi} \cdot 2 \cdot \sum_{k \in \mathbb{N}_0} \frac{(-1)^{k+1} \cdot (2k+1)}{(2k+1)^2 - (2 \cdot a \cdot t)^2} \\ &= \sin(2 \cdot a \cdot \pi \cdot t) \cdot \sec(a \cdot \pi \cdot t) \cdot 1/2 \\ &= \sin(a \cdot \pi \cdot t) = f(t) \end{split}$$

References

[1] Ricardo Estrada (1995). *Summability of cardinal series and of localized Fourier series*. Applicable Analysis: An International Journal

[2] J. R. Higgins (1985). *Five short Stories about the Cardinal Series*. American Mathematical Society

[3] Qian, L. (2002). *On the Regularized Whittaker-Koltel'nikov-Shannon Sampling Theorem.* Proceedings of the American Mathematical Society, Vol. 131, No. 4

[4] Schuchmann, M. (2012). *Approximation and Collocation with Wavelets. Approximations and Numerical Solving of ODEs, PDEs and IEs.* Osnabrück: DAV

[5] M. Schuchmann, M. Rasguljajew (2013). An Approximation on a Compact Interval Calculated with a Wavelet Collocation Method can Lead to Much Better Results than other Methods. Journal of Approximation Theory and Applied Mathematics (Vol. 1)

[6] M. Schuchmann, M. Rasguljajew (2013). Approximation of Non $L^2(R)$ Functions on a Compact Interval with a Wavelet Base (2013, Vol. 2)

[7] M. Schuchmann, M. Rasguljajew; (2013). *Error Estimations in an Approximation on a Compact Interval with a Wavelet Bases*. COMPUSOFT - An international journal of advanced computer technology, Vol. 2, Issue 11, November 2013.

[8] J. M. Whittaker (1927). *On the Cardinal Function of Interpolation Theory*. Proceedings of the Edinburgh Mathematical Society.