Extrapolation and Approximation with a Wavelet Collocation Method for ODEs

M. Schuchmann and M. Rasguljajew from the Darmstadt University of Applied Sciences

Abstract

In this article we use a wavelet collocation method for an approximation of the solution of an ODE. We show that an approximation with the Shannon wavelet leads to better approximations than a Daubechies wavelet and we even can use the approximation for an extrapolation.

Introduction

We use the same Method as in "An Approximation on a Compact Interval Calculated with a Wavelet Collocation Method can Lead to Much Better Results than other Methods" described.

In the wavelet theory a scaling function ϕ is used, which belongs to a MSA (multi scale analysis). From the MSA we know, that we can construct an orthonormal basis of a closed subspace V_j , where V_j belongs to a the sequence of subspaces with the following property:

$$\dots \subset V_{-1} \subset V_0 \subset V_1 \subset \dots \subset L^2(R),$$

 $\{\phi_{i,k}(t)\}_{k\in\mathbb{Z}}$ is an orthonormal basis of V_i with $\phi_{i,k}(t) = 2^{j/2} \phi(2^j t - k)$.

We use the following approximation function

$$y_j(t) \coloneqq \sum_{k=k_{\min}}^{k_{\max}} c_k \cdot \phi_{j,k}(t)$$
, with $\phi \in C^l(R)$.

 k_{max} and k_{min} depend on the approximation interval [t_0, t_{end}] (see [7]).

Now we can approximate the solution of an initial value problem y' = f(y,t) and $y(t_0) = y_0$ by minimization of the following function

(1)
$$Q(c) = \sum_{i=1}^{m} \left\| y_{j}'(t_{i}) - f(y_{j}(t_{i}), t_{i}) \right\|_{2}^{2} + \left\| y_{j}(t_{0}) - y_{0} \right\|_{2}^{2}$$

We apply the describe method in an example:

Applying the Method and Assessing an Approximation

Example 1:

We want to approximate the solution of

$$y' = -t y,$$

 $y(0) = 1$

on the interval $I = [t_0, t_{end}] = [0, 3]$.

We know minimize Q for $k_{max} = -k_{min} = 15$, 20, 15 with j = 0, 1, 2 and $h = (t_{end} - t_0)/(4k_{max}) = 3/(4k_{max})$.

We calculate the mean squared error

(2)
$$mse = \frac{1}{101} \sum_{i=0}^{100} (y(t_0 + i \cdot h_0) - y_j(t_0 + i \cdot h_0))^2$$

with $h_0 = (t_{end} - t_0)/100 = 3/100$ and $Q_{min} = min Q(c) = Q(\hat{c})$. sse is the sum of squared errors with $sse = mse \cdot 101$.

Here we see the results of the graphs from y_j and y.

As seen above, there is a correlation between Q_{min} and mse.

We now apply a linear regression on the points $(-ln(Q_{min}), -ln(mse))$ (here we have: (55.0254, 53.4888), (55.749, 55.4352), (55.8814, 55.2207), (65.4786, 63.1568), (63.7366, 64.5066), (64.1155, 65.3259), (41.251, 33.5874), (63.3194, 57.8099), (64.0074, 66.7291))

for the different *j* und k_{max} :

Figure 2. Linear Regression on the points $(-ln(Q_{min}), -ln(mse))$

Here is the regression table with a R^2 of 0.934136.

	Estimate	SE	TStat	PValue
1	-16.7718	7.48689	-2.24016	0.0600638
х	1.26041	0.126497	9.96392	0.0000219101

So we can see relativ good with Q_{min} , if an approximation is good. But it can occur that the residuals are very small at the collocation points but not between them. For that reason we later define Q_a to detect this.

Now we see the graph of *d* for $k_{max} = 25$ and j = 2 with

$$d(t) = \left\| y_{j}'(t_{i}) - f(y_{j}(t_{i}), t_{i}) \right\|_{2}^{2}:$$

Here is the Graph of (*k*, -*ln*(*mse*)):

(3)

In red we see the points for j = 0 connected with lines, in green for j = 1 and in blue for j = 2. Theoretically the curves must increase because for a greater k_{max} the values of Q_{min} must shrink.

We have seen in this example, that there is a correlation between Q_{min} and *mse*. This relationship can - with an insufficient number of collocation points - no longer exist. Here, however, we can simply use another criterion Q_a where we can simply use the calculated \hat{c} from the minimization:

(4)
$$Q_{a}(\hat{c}) = \sum_{i=1}^{m_{a}} \left\| y_{j}'(\tau_{i}) - f(y_{j}(\tau_{i}), \tau_{i}) \right\|_{2}^{2} + \left\| y_{j}(\tau_{0}) - y_{0} \right\|_{2}^{2}$$

with $\tau_i = t_0 + i \cdot h/a$. $m_a = a \cdot m$ and an integer a > 1. If we use a big a, we should weight Q_a with 1/a, but in different simulation we got with a = 2 good results:

(4a)
$$\widetilde{Q}_{a}(\hat{c}) = 1/a \cdot \sum_{i=1}^{m_{a}} \left\| y_{j}'(\tau_{i}) - f(y_{j}(\tau_{i}), \tau_{i}) \right\|_{2}^{2} + \left\| y_{j}(\tau_{0}) - y_{0} \right\|_{2}^{2}$$

For a good approximation Q_a should be small with any a. If h is too big, than $Q_a >> Q_{min}$.

Example 2:

We now calculate the approximations in example 1 with another h, which is too big $h = (t_{end} - t_0)/(1/2k_{max}) = 6/k_{max}$. Here we see with the following graphs, that Q_{min} can be small but *mse* and *sse* a relativ big (and so the approximation is not good). The worse approximation we can detect with Q_2 or Q_4 .

Figure 5. Graphs from y_j and y with a too big h

Now we see three linear regressions with the points $(-ln(Q_{min}), -ln(mse))$ the points $(-ln(Q_4), -ln(mse))$ and $(-ln(Q_2), -ln(mse))$. Here we can see, that the correlation between Q_{min} and *mse* is because of the too big step size not so high.

Q_{min} vs. mse:

Here is the regression table with a R^2 of 0.433152.

	Estimate	SE	TStat	PValue
1	-50.4893	23.9804	-2.10544	0.0732805
х	0.893277	0.386234	2.31279	0.0539648

Q₄ vs. mse:

Figure 7. Linear Regression on the points $(-ln(Q_4), -ln(mse))$

Here is the regression table with a R^2 of 0.994715.

	Estimate	SE	TStat	PValue
1	1.13039	0.272975	4.14099	0.00434376
х	0.950635	0.0261912	36.296	$3.13045 imes 10^{-9}$

Q_2 vs.	mse:
-----------	------

Figure 8. Linear Regression on the points $(-ln(Q_2), -ln(mse))$

Here is the regression table with a R^2 of 0.991411.

	Estimate	SE	TStat	PValue
1	0.0730749	0.362907	0.20136	0.846143
x	0.90963	0.0320016	28.4245	$1.71502 imes 10^{-8}$

So Q_a is here a good criterion to detect a worse approximation.

For j = 2 and $k_{max} = 15$ the approximation was bad. Here was h = 6/15 = 0.4. We see with the graph of *d* (see (3)) that the residuals are only small at the collocation points:

Here we see how $d(t_i) = d(0.4i)$ is very small and between two collocation points *d* has very big function values.

For j = 0 and $k_{max} = 20$ the approximation was good. Here h = 6/20 = 0.3. We see the graph for that case:

Because we started with the collocation point t_1 in Q we get a relative big value of d at the point t_0 .

Here we see the graph with the whole plot range:

Using the Method for an Extrapolation

The approximation function can be even used for an extrapolation outside the approximation interval $[t_0, t_{end}]$.

We consider the approximations function y_j for j = 0 and $k_{max} = 15$ from example 1 on the interval [-2, 5]:

Figure 13. Graph of $y_j - y$ for j = 0 und $k_{max} = 15$.

If we use in example 1 the Intervall I = [-1, 1] with h = 2/m and $m = 2k_{max}$, then we get the following graph of the approximation function y_i for j = 0 and $k_{max} = 15$:

Here is the graph of the difference $y_j - y$:

Figure 15. Graph of y_j - y for j = 0 und $k_{max} = 15$

Now we consider this approximation function on a bigger interval [-2, 2]:

Here is the approximation function on a three times bigger interval than the approximation interval:

Figure 19. Graph of $y_j - y$ for j = 0 und $k_{max} = 15$ on [-3, 3]

To what extent one can extrapolate the approximation depends on the number of coefficients c_k , that means from k_{max} (and generally from k_{min} , too) and from the from the width of the approximation interval I. Here k_{max} can not be chosen arbitrarily large, since only the coefficients c_k can be determined well in which $|\phi_{j,k}|$ is still sufficiently large or by using wavelets with compact support at all nonzero.

A Comparison of the Shannon Wavelet with the Daubechies Wavelet of Order 8

Example 3:

We solve approximately the problem of example 1 on I = [-1, 1] and we minimize Q and use the collocation points $t_i = i \cdot h$ (with $i = 1, 2, ..., m, m = c \cdot k_{max}$), with $h = 2/(c \cdot k_{max})$ and $k_{min} = -k_{max}, k_{max} = 15, 20, 25, c = 1, 2, 3$ and j = 0, 1, 2.

We use the Shannon wavelet and for a comparison the Daubechies wavelet of order 8.

If we use generally a Daubechies wavelet of order g with the approximation interval $I = [t_0, t_{end}]$ we can chose $k_{min} = 2^j t_0 - (2g-1)+1$ and $k_{max} = 2^j t_{end} - 1$, because of the compact support of the Daubechies wavelet (otherwise $\phi_{i,k} = 0$ on I).

In example 3 we have g = 8. Two tables follow for comparing the results:

Daubechies wavelet:

j	т	k _{min}	k _{max}	Qmin	Q_2	mse
0	15.	-15	0.	4.35628×10^{-28}	0.00466786	8.43333×10 ⁻⁷
0	30.	-15	0.	1.7124×10^{-8}	$1.0587 imes 10^{-6}$	2.27548×10^{-11}
1	17.	-16	1.	$1.00872 imes 10^{-29}$	0.29901	0.0000127997
1	34.	-16	1.	$1.46341 imes 10^{-8}$	$8.28391 imes 10^{-7}$	5.72889×10^{-11}
2	21.	-18	3.	$6.71512 imes 10^{-30}$	246.608	0.141992
2	42.	-18	3.	$3.57194 imes 10^{-9}$	0.0340748	1.89731×10^{-8}
Shanı	non:					
j	m	k _{min}	k _{max}	Qmin	Q_2	mse 10^{-14}
0	15	-15	15	8.23083×10^{-12}	8.38252×10 ¹¹	3.9383×10 ⁻¹
0	30	-15	15	6.25902×10^{-27}	1.41041×10^{-24}	2.56371×10^{-27}
0	20	-20	20	1.23927×10^{-11}	6.93437×10 ⁻¹¹	1.85861×10^{-14}
0	40	-20	20	1.45232×10^{-26}	9.48622×10^{-25}	2.32583×10^{-27}
0	25	-25	25	2.2285×10^{-11}	$7.84257 imes 10^{-11}$	1.78816×10^{-14}
0	50	-25	25	$1.20324 imes 10^{-26}$	$6.9879 imes 10^{-25}$	4.64306×10^{-27}
1	15	-15	15	$2.99289 imes 10^{-18}$	$6.02327 imes 10^{-12}$	3.72281×10^{-15}
1	30	-15	15	$9.91007 imes 10^{-30}$	$3.01769 imes 10^{-25}$	3.27535×10^{-29}
1	20	-20	20	$4.97124 imes 10^{-9}$	$8.27043 imes 10^{-8}$	1.56287×10^{-11}
1	40	-20	20	$1.92217 imes 10^{-27}$	$2.78109 imes 10^{-24}$	3.97155×10^{-28}
1	25	-25	25	$8.75935 imes 10^{-10}$	1.37052×10^{-8}	6.55506×10^{-12}
1	50	-25	25	$5.66866 imes 10^{-27}$	3.01211×10^{-23}	2.03996×10^{-27}
2	15	-15	15	$2.17737 imes 10^{-29}$	0.000289405	1.76241×10^{-7}
2	30	-15	15	1.69325×10^{-28}	$6.41826 imes 10^{-18}$	1.0083×10^{-21}
2	20	-20	20	$9.6976 imes 10^{-8}$	0.0000230687	$5.39382 imes 10^{-9}$
2	40	-20	20	$7.86162 imes 10^{-28}$	$1.77107 imes 10^{-20}$	$1.3874 imes 10^{-24}$
2	25	-25	25	4.2941×10^{-8}	2.35033×10^{-6}	$3.54143 imes 10^{-10}$
2	50	-25	25	$3.08239 imes 10^{-28}$	$2.38455 imes 10^{-24}$	6.62603×10^{-29}

Here are the Graphs of y_j and y, $y_j - y$ and of y_j and y on a bigger interval (here [-3, 3]) for an extrapolation outside the approximation interval I an at least the graph of d. We start with the Daubechies wavelet:

Figure 20. Graphs of y_i and y with the Daubechies wavelet

Figure 21. Graphs of y_j - y with the Daubechies wavelet

Figure 22. Graphs of y_j and y with the Daubechies wavelet on the interval [-3, 3]

Figure 23. Graphs of d

Now the same curves for the Shannon wavelet:

Figure 24. Graphs of y_j and y with the Shannon wavelet

Figure 25. Graphs of y_i - y with the Shannon wavelet

Figure 27. Graphs of d with the Shannon wavelet

The best extrapolation with the Daubechies wavelet:

Figure 28. Best extrapolation with the Daubechies wavelet

An extrapolation with the Shannon wavelet:

Figure 29. An extrapolation with the Shannon wavelet

With the Shannon wavelet be got much smaller *sse*'s and the extrapolation was much better, too. That is interesting, because the Shannon wavelet has no big order, but here we don't calculate an orthogonal projection on V_j . With the Daubechies wavelet we need less coefficients c_k . In many simulations we saw that we need a bigger j with the Daubechies wavelets (order 5, 7 and 8) to get an as good approximation as with the Shannon wavelet.

References

[1] S. Bertoluzza. *Adaptive wavelet collocation method for the solution of Burgers equation*. Transport Theory and Statistical Physics, 25: 3-5, (1996).

[2] T. S. Carlson, J. Dockery, J. Lund. *A Sinc-Collocation Method for Initial Value Problems*. Mathematics and Computation, Vol. 66, No. 217, (1997).

[3] D. L. Donoho. *Interpolating Wavelet Transforms*. Tech. Rept. 408. Department of Statistics, Stanford University, Stanford, (1992).

[4] E. Hairer, G. Wanner. Vol. 1 : Nonstiff Problems. Springer, 2. Ed., (1993).

[5] E. Hairer, G. Wanner. Vol. 2 : Stiff and Differential-Algebraic Problems. Springer, 2. Ed., (1996).

[6] L. Qian. *On the Regularized Whittaker-Koltel'nikov-Shannon Sampling Theorem.* Proceedings of the Amarican Mathematical Society, Vol. 131, No. 4, (2002).

[7] M. Schuchmann. Approximation and Collocation with Wavelets. Approximations and Numerical Solving of ODEs, PDEs and IEs. Osnabrück, DAV, (2012).

[8] G. Strang. Wavelets and Dilation Equations: A Brief Introduction. SIAM Review Vil. 31, No. 4, (1989)

[9] M. Unser, T. Blu. *Comparison of Wavelets from the Point of View of their Approximation Error.* Proc. of SPIE Vol. 3458, Wavelet Applications in Signal and Image Processing, (1998)

[10] M. Unser (1996). *Vanishing moments and the approximation power of wavelet expansions*. Proceedings of the 1996 IEEE International Conference on Image Processing, (1996).

[11] R. Vuduc. A Wavelet Collocation Method for Solving PDEs. J. Comp. Phys., (2000).