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Abstract 
 

As part of a research project we ran several simulations with a wavelet collocation method to 
find out how the optimal parameters can be determined. Comparing the approximations of 
functions on a compact interval I, we noticed that when y is not in L2(R) a certain wavelet 
collocation method approximation was significantly better than projecting 1Iy orthogonal to Vj 
(with the indicator function 1I). This method even gives very good approximations when 
using relatively few basis elements.  
 
 

Introduction 
 

In the wavelet theory a scaling function f is used, which belongs to a MSA (multi scale 
analysis). From the MSA we know, that we can construct an orthonormal basis of a closed 
subspace Vj, where Vj belongs to a the sequence of subspaces with the following property:  
 
                                            ... ÕV-1ÕV0ÕV1 Õ...Õ L2(R), 
 
{fj,k(t)}keZ  is an orthonormal basis of Vj with fj,k(t) = 2j/2f(2jt - k). 
 
We use the following approximation function  
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kmax and kmin depend on the approximation interval [t0,tend] (see [7]). 
 
Now we can approximate the solution of an initial value problem y' = f(y,t) and y(t0) = y0 by 
minimization of the following function  
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For m  = |kmax - kmin| we get an equivalent problem:  
 

)),(()(' iijij ttyfty   for i = 1, 2, ...., m and 00 )( yty j  . 

 
Analogous we could treat boundary conditions instead of the initial condition. This method 
can be even used analogous for PDEs, ODEs of higher order or ODEs, which have the Form 
F( 0),,' tyy . 
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Error Estimation 

 
For the orthogonal projection yj from y in Vj we know from the Gilbert-Strang Theory (see 
[9]) an upper bound of the approximation error in dependency of the order p: If the wavelet is 

of order p then the approximation error has the order O(2-jp) if 
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If a wavelet is of order p the scaling function f even has a interpolation property, because 
then we can construct the functions tr with r = 0, 1, ..., p-1 over a linear combination of f(t-k) 
(see [9]). That's also a property of the so called interpolating wavelets. For interpolating 
wavelets we find error estimations in [5] and [8]. 
 
In the examples we used the Shannon wavelet. For this wavelet we have additional 
information about the error in the Fourier space from the Shannon theorem (under the 
conditions of this theorem). For a good approximation with a small j the behavior of Y(w) 
with growing |w| is important, because  
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With the Parseval theorem we get  
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But if we calculate yj over the minimization of Q we generally don’t get a orthogonal 
projection form y in Vj and generally y is not quadratic integrable over R. There we can use 
the following theorem: 
  
Theorem 1: 
Assumptions: We have a initial value problem y ' = f(y, t) with y(t0) = y0 and 
 

    ||yj(t0) - y(t0)||  § d  , 
 

(4)     ||yj'(t) - f(yj(t), t)|| § M 
 

and 
 

(5)    ||f(y(t), t) - f(yj(t), t)|| § Lÿ||y(t) - yj(t)|| with L > 0. 
 
Then we get for t ¥ t0: 
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                                   ||yj(t) - y(t)|| ≤ d ÿ )( 0ttLe   + )1e(L/M )tt(L 0    

 
For a proof see [6]. 
 
In the examples and in many simulations we saw that d was very small. If we assume d =0 
then we get the following error estimation (if we consider the compact interval I = [t0, tend] 
and under the assumptions of theorem 1): 
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So if M is very small then we can get very good approximations if f is Lipschitz continuous. 
 
 
 
 

Comparing the Two Ways of Approximation 
 
Now we want to approximate two functions in the following two examples, which are not 
quadratic integrable on R.  
 
 
Example 1: 
We begin with an approximation of the function y(t) = e-t  on I = [0, 1]. y is not in L2(R), but 
every on I continuous function is in L2(I) or 1Iy (with indicator function 1I of I) is in L2(R). So 
we set kmax = -kmin = 20 and we calculate an approximation function by an orthogonal 
projection from 1Iy on V1. Therefore we calculate the coefficients of the approximation 
function over a scalar product: 

 

kc kjy ,]1,0[ ,1    =  
1

0

,1 )()( dttty k  

 
With the Shannon wavelet we get a worse approximation (dashed line is thee graph of y): 
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Figure 1. Graphs of y1 (orthogonal projection form 1Iy on V1) and y 

 
With the Daubechies wavelet of order 8 we get no better approximation:  
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Figure 2. Graphs of y1 (orthogonal projection form 1Iy on V1) and y, Daubechies wavelet order 8 

 
 
Even if we set  j = 3 and kmax =- kmin = 24 we get not really a useful approximation: 
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Figure 3. Graphs of y3 (orthogonal projection form 1Iy on V3) and y  
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If we take a look on the graphs on a bigger interval we see, that we calculated the best 
approximation of the function 1[0,1]ÿy. That function is on I identically to y and outside I equal 
to zero:  
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Figure 4. Graphs of y3 (orthogonal projection form 1Iy on V3) and y, bigger area 

 
 
For a comparison the same approximation with the Daubechies wavelet of order 8: 
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Figure 5. Graph of y3 (orthogonal projection form 1Iy on V3) and y,  

Daubechies wavelet and bigger area 
 
So the orhogonal projection considers the whole real axis, when we integrate only over I. 
 
Now we calculate the coeffictions ck by the minimization of Q (see (1)). We use the initial 
value problem y´= -y, y(0) = 1 and set an even smaller summation area with kmin = -8 and     
kmax = 10 and j = 1. We use the collocation points ti = i/20 with i = 0, 2, ..., 20. 
 
Graphically we see no difference between the approximation function yj and y on I           
(Qmin º 3.00724ÿ10-30): 
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Figure 6. Graphs of y1 (calculated by min Q) and y 

 
 
Here is the graph of the difference function yj - y: 
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Figure 7. Graph of y1 - y (y1 calculated by min Q) and y  

 
 
We could even use this approximation function for an extrapolation on a bigger interval than 
I. Here we see the graph of y1 - y on the interval [-0.5, 1.5]: 
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Figure 8. Graph of y1 - y (y1 calculated by min Q) and y on a bigger area  

 
 
Here is the graph of d with d(t) = (yj(t)-f(yj(t),t))

2: 
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Figure 9. Graph of d  

 
 
So M is small. 
 
 
Example 2: 
Now we consider the function y(t) = sin(t), which is not quadratic integrable on R but we 
could construct y with functions out of Vj by using the Shannon wavelet.  
 
If we use the Shannon wavelet, yœL1(R)L2(R)  is in Vj if supp Y Œ [-2jÿp, 2jÿp] (where Y is 
the Fourier transform of y).   
 
If we consider the function h(t) = sin(at) then 
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with the Dirac delta distribution d (using for transformation and back-transformation the 

factor 1/ 2 ). So the Fourier transform of h(t) = sin(at) (from now we choose only a > 0) is 
not a function and h is not quadratic integrable on R but we can show that we get for the basis 
coefficients in Fourier space <H,Fj,k> = 2-j/2h(k/2j) for a < 2jÿp. 
 
So we set ck = 2-j/2y(k/2j) and we get for kmax = - kmin = 15 the following graph of y0 - y: 
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Figure 10. Graph  of y0 - y, kmax = 15, ck = 2-j/2y(k/2j), Shannon wavelet 

 
For kmax = - kmin =  50: 
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Figure 11. Graph  of y0 - y, kmax = 50, ck = 2-j/2y(k/2j), Shannon wavelet 

 
 
For kmax = - kmin = 100: 
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Figure 12. Graph  of y0 - y, kmax = 100, ck = 2-j/2y(k/2j), Shannon wavelet 

 
If we would use the same method like in example 1 to get an approximation from y on               
I = [-p, p] and if we calculate ck = jky ,]5,5[ ,1  , so we get with kmin = -kmax = 15 and  j = 0 a 

bigger error y0 – y:  
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With the Shannon wavelet, we get the following difference y0 - y: 
 

-3 -2 -1 1 2 3

-0.04

-0.02

0.02

0.04

 
Figure 13. Graph of y0 - y (y0 orthogonal projection from 1[-5,5] y on V0)  

 
Here is the problem, that the Fourier transform of y has a compact support, but not the Fourier 
Transform of 1[-5,5]y. Here ist the graph of magnitude spectrum of the Fourier transform          
of 1[-5,5]y: 
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Figure 14. Magnitude spectrum of the Fourier transform from 1[-5,5] y  

 
Now we consider the initial value problem with the solution y(t) = sin(t):  
 
y'(t) = cos(t), y(0) = 0. 
 
We calculate the coefficients ck by minimization of Q using the collocation points                    
tj = -p + iÿp/15, i = 0, 1, ..., 30.  We set  j = 0,  kmax = -kmin = 15 an get the following difference 
y0 - y (with Qmin º 4.7488ÿ10-28): 
 
 



12 
 

-3 -2 -1 1 2 3

-1. μ 10-13

-8. μ 10-14

-6. μ 10-14

-4. μ 10-14

-2. μ 10-14

2. μ 10-14

4. μ 10-14

 
Figure 15. Graph of y0 - y (y0 calculated by min Q)  

 
 

Conclusions 
 
If we use a wavelet basis for the approximation of a not quadratic integrablen function y on a 
compact interval I, the calculation of an approximation function over the orthogonal 
projection form 1Iy on Vj can lead to a worse approximation. But if we solve numerically an 
initial value problem with the solution y by using a wavelet collocation method, we can get 
much better approximations. Even if y would be band limited generally 1Iy is not band limited 
(because of the Heisenberg uncertainty principle in the Fourier transform)..  
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