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Abstract
As part of aresearch project we ran several simulations with a wavelet collocation method to
find out how the optimal parameters can be determined. Comparing the approximations of
functions on a compact interval 7, we noticed that when y is not in L?(R) a certain wavelet
collocation method approximation was significantly better than projecting 7,y orthogonal to 7;
(with the indicator function ;). This method even gives very good approximations when
using relatively few basis elements.
I ntroduction
In the wavelet theory a scaling function & is used, which belongs to a MSA (multi scale
analysis). From the MSA we know, that we can construct an orthonormal basis of a closed
subspace V;, where V; belongs to a the sequence of subspaces with the following property:
.. CV_ i cVycV; C...CLZ(R),
{&,4(t) ez 1S an orthonormal basis of V; with 4,(t) = 27 42t - k).

We use the following approximation function

y, ()= kmzaka ¢, (t) ,with geC'(R).

k=kpin
kmax @Nd ki, depend on the approximation interval [ty,t..q/ (See[7]).

Now we can approximate the solution of an initial value problem y' = f{y,¢) and y(ty) = yy by
minimization of the following function

(1) 0(c) = ﬁuy;a,.) — S @)+, ) -y, -

Form = |kpax - kmin] We get an equivalent problem:
y,'t)=f(y,;@)t;) fori=1,2,...,mand y,(¢,) = y,.

Anaogous we could treat boundary conditions instead of the initial condition. This method
can be even used analogous for PDEs, ODESs of higher order or ODEs, which have the Form

F(y',y,t)=0.



Error Estimation

For the orthogonal projection y; from y in ¥; we know from the Gilbert-Strang Theory (see
[9]) an upper bound of the approximation error in dependency of the order p: If the wavelet is

of order p then the approximation error has the order O(2%) if H yP| < oo and

L

ly-», p
If a wavelet is of order p the scaling function # even has a interpolation property, because
then we can construct the functions ¢ with » = 0, 1, ..., p-1 over alinear combination of #(t-k)
(see [9]). That's also a property of the so caled interpolating wavelets. For interpolating
wavelets we find error estimationsin [5] and [8].

In the examples we used the Shannon wavelet. For this wavelet we have additional
information about the error in the Fourier space from the Shannon theorem (under the
conditions of this theorem). For a good approximation with a small j the behavior of Y(«)
with growing |w| isimportant, because

J‘Y(a))eiw’da}— Y(w)e'™dw

1 1 j
() - yi() = Vr - V2r 3,

2z ©
“dw+ L IY(w)ei”tdw
2/

1
= o [Y@edor = |

With the Parseval theorem we get

Hy_yf 1 :\/_TTY(a))ra’a)—k T|Y(a))|2da) .
—o 2z

But if we calculate y; over the minimization of Q we generaly don’'t get a orthogonal
projection form y in ¥; and generally y is not quadratic integrable over R. There we can use
the following theorem:

Theorem 1:
Assumptions: We have aiinitial value problem y ' = f{y, ¢) with y(zy) = y, and

bitt) - y(@y)l| <0,
4) '@ -1, 9l =M
and
®) @, v - 1050, YI| <LAly@® -yl with L > 0.

Then we get for ¢ > ¢#:



yi(0) - y(0)]] < 8- " + M/L - (e —1)
For a proof see [6].
In the examples and in many simulations we saw that J'was very small. If we assume ¢ =0

then we get the following error estimation (if we consider the compact interval I = [y, t.nd
and under the assumptions of theorem 1):

HJ/,- “ e SM/L'\/ZT(eL(t_"’) ~1)2dt

fo

_to

end

<MIL- \/%L ) (_ 4eL(’em1—fo) +3+e2L(’f"f"’°))+z

So if Misvery smal then we can get very good approximationsif fis Lipschitz continuous.

Comparing the Two Ways of Approximation

Now we want to approximate two functions in the following two examples, which are not
guadratic integrable on R.

Example 1.

We begin with an approximation of the function y(z) = ¢* on = /0, 1].yisnotin L*(R), but
every on I continuous function isin L(I) or 1,y (with indicator function /; of 1) isin L*(R). So
we set ko = -knin = 20 and we calculate an approximation function by an orthogonal
projection from 7/, on V;. Therefore we calculate the coefficients of the approximation
function over ascalar product:

Cr = <1[0,1]y’¢j,k> = IY(t)'¢1,k (t)dt

With the Shannon wavelet we get a worse approximation (dashed line is thee graph of y):
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Figure 1. Graphs of y, (orthogonal projection form 7,y onV,) andy

With the Daubechies wavelet of order 8 we get no better approximation:
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Figure 2. Graphs of y; (orthogonal projection form 7, on V,) and y, Daubechies wavelet order 8

Evenif weset j =3 and kyux = kimin = 24 we get not really a useful approximation:
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Figure 3. Graphs of y; (orthogonal projection form 7,y on V3) andy
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If we take a look on the graphs on a bigger interval we see, that we calculated the best
approximation of the function 7jo1j-y. That function is on / identically to y and outside / equal
to zero:
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Figure 4. Graphs of y; (orthogonal projection form 7,y on V3) and y, bigger area

For a comparison the same approximation with the Daubechies wavelet of order 8:
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Figure 5. Graph of y3 (orthogonal projection form 7,y onV3) and y,
Daubechies wavelet and bigger area

So the orhogonal projection considers the whole real axis, when we integrate only over /.

Now we calculate the coeffictions ¢, by the minimization of Q (see (1)). We use the initial
value problem y'= -y, y(0) = 1 and set an even smaller summation area with k,,;, = -8 and
kmax =10 @and j = 1. We use the collocation points ¢; = i/20 withi =0, 2, ..., 20.

Graphically we see no difference between the approximation function y; and y on [/
(Omin ~ 3.00724-10°%):
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Figure 6. Graphs of y; (calculated by min Q) and y

Here isthe graph of the difference function y; - y:
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Figure 7. Graph of y; - y (y; calculated by min Q) and y

We could even use this approximation function for an extrapolation on a bigger interval than
1. Here we see the graph of y; - y on theinterval /-0.5, 1.5]:
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Figure 8. Graph of y; - y (y; calculated by min Q) and y on abigger area

Hereisthe graph of d with d(t) = (v;i(t)-f(vi(?), 1)’
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Figure 9. Graph of d

So M issmall.

Example 2:
Now we consider the function y(¢) = sin(t), which is not quadratic integrable on R but we
could construct y with functions out of V; by using the Shannon wavelet.

If we use the Shannon wavelet, yeL'(R)NL*(R) isin V; if supp Y ¢ [-2 -z 2'-A] (where Y is
the Fourier transform of y).

If we consider the function 4(z) = sin(at) then

Vor

with the Dirac delta distribution ¢ (using for transformation and back-transformation the

factor 1/~/2n ). So the Fourier transform of 4(t) = sin(at) (from now we choose only a > 0) is

not a function and /4 is not quadratic integrable on R but we can show that we get for the basis
coefficientsin Fourier space <H, &> = 27’ h(k/2) for a < 2z

H(@) = —= [h(0)-e™dr = 72 (5(0+ @) - 8(0-a))
T o

So we set ¢, = 27%y(k/2) and we get for ke = - knuin = 15 the following graph of y, - y:
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Figure 10. Graph of Yq - Y, kmax = 15, ¢ = 2%y(k/2), Shannon wavelet

For ke = - kpin = 50:
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Figure 11. Graph of yo - Y, Kmax = 56, o = 27y (k/2), Shannon wavelet

For ke = - kiin = 100:
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Figure 12. Graph of Yo - Y, Kmax = 100, ¢ = 29y (k/2'), Shannon wavelet

If we would use the same method like in example 1 to get an approximation from y on
1 = [-z, 7] and if we calculate ¢ =<]1_5’5]y,¢k’j>, so we get with k,,;, = -kox = 15and j=0a
bigger error yy—y:
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With the Shannon wavelet, we get the following difference y, - y:
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Figure 13. Graph of y; - y (Yo orthogonal projection from 7,5 5,y on Vo)

Here is the problem, that the Fourier transform of y has a compact support, but not the Fourier
Transform of /.5 sy. Here ist the graph of magnitude spectrum of the Fourier transform

of ][_5,5])/:
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Figure 14. Magnitude spectrum of the Fourier transform from .5 5;»

Now we consider the initial value problem with the solution y(?) = sin(?):

Y'(t) = cos(t), y(0) = 0.
We calculate the coefficients ¢, by minimization of Q using the collocation points

ti=-7+in/15,i=0,1,..,30. Weset j =0, kuuw =-knin=15 an get the following difference
yo - y (With Oy ~ 4.7488-10%):
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Figure 15. Graph of yq - y (Yo calculated by min Q)

Conclusions

If we use awavelet basis for the approximation of a not quadratic integrablen function y on a
compact interval I, the calculation of an approximation function over the orthogonal
projection form /;y on V; can lead to a worse approximation. But if we solve numerically an
initial value problem with the solution y by using a wavelet collocation method, we can get
much better approximations. Even if y would be band limited generally 7,y is not band limited
(because of the Heisenberg uncertainty principle in the Fourier transform)..
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