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Abstract

In this article we describe a nonparametric regression using a wavelet basis. There exist
different approaches for a regression based on wavelets. For the regression which we use in
our article we must calculate coefficients over an integral but for further regressions with the
same number of points we can use the same coefficients. We describe the regression for
pointsin R? and R’ and we use a help function, which is constant on an area around the points
in contrast to other approaches where the regression function is shifted.

Regression for Functionsf: R—R

We have got n points (x,,y;), (x2,y2), ..., (xn,yy) fOr example from measurements. We assume,
that there exists a causal relationship between the x; and the y;, like

(1) yi=fx) +ei .
The ¢; represents the error, for example the measurements error. Like in the classical statistics
y; can be arealisation of arandom variable, so that we have the theoretical model

Yi=fx) + E;
e; is a random variable with mean 0 and variance ¢°. With additional assumptions we can
assume, that the e; are independent identically N(0, o°) distributed, but that’s not necessary for
our method. The function f'is often unknown in praxis, but in the classical regression anaysis

the type is known. Here even the type of the function /' can be unknown.

If we apply a continuous approximation, where we knew the function f, we get an orthogonal
projection form f'on V; with

fj(‘x) = kaj¢j,k(x),

with f = [4,,(x)f(x)dx .

For easier notation we assume, that the variable x has values out of theinterval [0, 1] and  x;
= i/n, with i = 1,2,..,n. With the resolution ; we could adjust, how many or how small the

details are, that we want take in account. Because 'is now unknown, we define a function 7
which has around the point x = x; the constant function value y;, so
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f(x) =y for LinE SR PPN Iy
n

2n n 2n
So we define;
B y, ,'Z(i_])+1£x<2i+]
f(x)= 2n 2n
0 selse

We define the help function f s, that the function is constant around the measurement point
x; . There exists definitions, where the help function is constant from on /x;, x;+;/, but here the
graph of regression function is shifted to the right.

For easier notation we assume that the scaling function is real-valued. Now we calculate a
best approximation f/ of ]7 in V; and we use this function as a regression function of the

points (x; y;). So we get an approximation of the coeffitions f¢ with:

2i+l 2i+]
j B,x(s)f(s)ds =" j b (s)F(s)ds =, j 8, (s )ds
i=l 2(i-1)+1 i=l 2(i-1)+]
2n n
Soweget f:
2i+]

fi(x)= ka b (x)=Y 3y, I¢]k(s)ds #,(%)
k=—ooi=l  2(i-1)+I

N

.‘=aji,/c
n 0 .
= Zyi Z a’ik - j,k('x)
i=1 k=—o0
If we use the same number of measurement points », we don't need do calculate the integral
above twice, we can use the same coefficients & ;.
In practice we don’t need the whole summation area Zfor the index k, because we have (here

[0, 1]) a compact interval and either the scaling function ¢ has compact support or it will
vanish for big or small arguments.

Example 1:

We simulated measurement points like in formula (1) and used a normal distributed error with
mean « = 0 and standard deviation o= 0.01. We used the function f:
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sin(2rn-t) if 0<t<1/2
f(t)=<sin(4r-t) if1/2<t<1
0 ese

We set n = 20. In the graph we see, that /'is not differentiable an the point x = ¥
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Figure 1: Graph of f

Here is the plot of the points:
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Figure 2: Simulated measurement points

Using the Haar wavelet und setting j = 4, k£ = -16,...,16, we get the following regression
function:
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Figure 3: Graph of the regression function using the Haar wavel et

With the Shannon wavelet we get a useful regression function:
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Figure 4: Graph of the regression function using the Shannon wavelet
Remarks 1:

1) The nonparametric regression with the Shannon wavelet can be applied under
http://www.stati stikcloud.at/htdocs-eng/\Wavel et-Regression-v3 (for small examples).

2) A method for discrete approximation, which causes less effort, is the direct application of
the Least Squares Method. So we would solve

min Q(a)
with O(a) = Z(y“ —fi(1,))°
and

f0)="Y aé,.(t).

Thisisaquadratic problem, becausef; islinear in a.
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Regression for Functionsf: R>—R
We assume that we got points (s, #, y;;) and
2 Vi =f(s.t)+e, withi=12,..n;, =12, . nyand(s; 1) € G

with
/' R*>R.

Here are e, the errors, which are for example realisations of independent identically N(0, o)
random variables £;;. We assumes; #s; and #; =¢; for i #j.

Now we choose a partition (Z;,,) from G:

W)Uz, =G andZ,nZ = withi =i and [ =1".
il

(2) (S,‘, l]) EZ[,]

We construct afunction /', which hasontheareaZ;; the constant function value y; :

f(s,t)=y,, if (1) €Zy,

F(s,t)=0 else.
So f lookslike:
F(s.)=3"3"y,1, (s.t),
i=1 =1

with 7,(s,t)=1if (s,;t) e Aand 1,(s,t)=0¢€lse.

The regression function 7] we get analogous to the two dimensional case:

fi(s)=2"3"F (2 s—k.2't—k,),

ky .k,
with

‘71‘{’/‘2 :2./ ) J.J‘}\J(S’t)'¢(2js_k];th_kZ)det

non

=203 - [[ #0275 =k, 20—k, )dsdr
Zi,I

i=1 I=1

.‘:aji,kl,kg



Using the same partition (Z; ), we need to evaluate the integral above only once if we save the

coefficients a’ ik i .
If the support of ¢ is compact, we must only take the following k;,k> € Z in account:
{1, ko) | supp d(2/s =k, 2t =k, )N G £ {}}.

If the support of ¢ isnot compact, we use only the following k;,k, €Z in the summation
above:

{(ki, k2) | 19(2's= k2"t =k,) b & for (5.0) € G}
With auseful ¢ > 0. In many examples we saw, that the method is relatively insensitive and

even with scaling functions without compact support we need not many basis coefficients for
agood regression. Using an equidistant grid, we get the s; and 7, with

s;=58; + (i-1)hy, for I<i<n;

and
=t + (-Dh, , for I<I<ny,
with
Sn _‘SI tn _t]
h, =— and h, =—
oon, -1 n,—1
Here you see the grid an Z;; in agraph:
t
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Figure 5: Scheme for the grid
Now the Z;; are:
Z, =s,—h, /2,5, +h /2)x[t,~h /2,t,+h, /2)
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The formulafor the coefficients fk{_kz has then the following form:

Somm t+h, /2 s;i+hg /2 . .
fkjlvkzzzj.zzyi,l. J‘ j¢(2js_k1;2jt_k2)det
i=1 I=1 i /2 sk /2

Example 2:
We generated points by simulation measurements (formula (2)) and used the function

fist)=e* "

We generated 100 function values over the area [-3, 3] at equidistant points. The error was
chosen normal distributed with mean 0 and the standard deviation 0.001.

We set:
n1=ng=10,
S =t=-3
s. =t =3

-2
Figure 6: Graph from f and the regression points

We use the Daubechies wavelet of order 7. Here is the graph of the one dimensional scaling
function:

36



0.8 |
0.6

0.4}

0.2’ /\

-0.2 ¢

0.4 |

Figure 7: Graph of the scaling function from the Daubechies wavel et

And hereisthe graph of the scaling function with two arguments:

Figure 8: Graph of the scaling function with two arguments from the Daubechies wavel et

Hereisthe graph of the approximation function at resolution j = 0:
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Figure 9: Graph of the approximation function for j =0

The graph of the approximation function at resolution j = /:
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Figure 10: Graph of the approximation function for j = 1

The graph of the details dy (= f; — fo):
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Figure 11: Graph of the Detailsfor j =0

Theindices k; and k, were chosen from -11-2' to 3-2 .We cal cul ate the mean quadratic error at
both resolutions:

I lez:(yi,l_f()(sl‘;tl))z =OOOO43196,
/

n,-n,=;

! ZI:ZJ:(J}LI = fi(s..1, ))2 = 0.000261559 .
]

n,-n,
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