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Abstract 
 
In this article we describe a nonparametric regression using a wavelet basis. There exist 
different approaches for a regression based on wavelets. For the regression which we use in 
our article we must calculate coefficients over an integral but for further regressions with the 
same number of points we can use the same coefficients. We describe the regression for 
points in R2 and R3 and we use a help function, which is constant on an area around the points 
in contrast to other approaches where the regression function is shifted.   
 
 
 

Regression for Functions f: RôR 
 
We have got n points (x1,y1), (x2,y2), ...., (xn,yn) for example from measurements. We assume, 
that there exists a causal relationship between the xi and the yi, like  
 
(1)                                        yi = f(xi) + ei  . 
 
 
The ei represents the error, for example the measurements error. Like in the classical statistics 
yi can be a realisation of a random variable, so that we have the theoretical model 
 
            Yi = f(xi) + Ei  .  
 
 
ei is a random variable with mean 0 and variance s2. With additional assumptions we can 
assume, that the ei are independent identically N(0,2) distributed, but that’s not necessary for 
our method. The function f is often unknown in praxis, but in the classical regression analysis 
the type is known. Here even the type of the function f can be unknown. 
 
If we apply a continuous approximation, where we knew the function f, we get an orthogonal 
projection form f on Vj with 
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For easier notation we assume, that the variable x has values out of the interval [0, 1] and      xi 
= i/n, with i = 1,2,..,n. With the resolution j we could adjust, how many or how small the 

details are, that we want take in account. Because f is now unknown, we define a function f~  
which has around the point x = xi the constant function value yi, so   
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So we define: 
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We define the help function f
~

 so, that the function is constant around the measurement point 
xi . There exists definitions, where the help function is constant from on [xi, xi+1], but here the 
graph of regression function is shifted to the right.  
 
For easier notation we assume that the scaling function is real-valued. Now we calculate a 

best approximation jf~  of f~  in Vj and we use this function as a regression function of the 

points (xi, yi). So we get an approximation of the coeffitions fk
j with: 
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So we get jf~ : 
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If we use the same number of measurement points n, we don't need do calculate the integral 
above twice, we can use the same coefficients aj

i,k.  
  
In practice we don’t need the whole summation area Zfor the index k, because we have (here 
[0, 1]) a compact interval and either the scaling function f has compact support or it will 
vanish for big or small arguments.  
 
 
Example 1: 
 
We simulated measurement points like in formula (1) and used a normal distributed error with 
mean m = 0 and standard deviation s = 0.01. We used the function f:  
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We set n = 20. In the graph we see, that f is not differentiable an the point x =  ½:  
 

    

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

 
Figure 1: Graph of f 

 
Here is the plot of the points: 
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Figure 2: Simulated measurement points 

 
Using the Haar wavelet und setting j = 4, k = -16,…,16, we get the following regression 
function:  
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Figure 3: Graph of the regression function using the Haar wavelet 

 
With the Shannon wavelet we get a useful regression function:  
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Figure 4: Graph of the regression function using the Shannon wavelet 

 
Remarks 1: 
1) The nonparametric regression with the Shannon wavelet can be applied under 
http://www.statistikcloud.at/htdocs-eng/Wavelet-Regression-v3 (for small examples). 
 
2) A method for discrete approximation, which causes less effort, is the direct application of 
the Least Squares Method. So we would solve   
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This is a quadratic problem, because fj is linear in a. 
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Regression for Functions f: R2ôR 

 
We assume that we got points (si, tl, yi,l) and   
 
(2)  l,ilil,i e)t,s(fy   with i = 1,2,…,n1 , l = 1,2,…,n2 and (si, tl)  G  
 
with  
                  f: R2R. 
 
Here are l,ie  the errors, which are for example realisations of independent identically N(0, 2) 
random variables Ei,l.  We assume si  sj and ti  tj for i  j. 
 
 
Now we choose a partition (Zi,l) from G: 
 

(1) GZ
l,i

l,i   and Zi,l  Zi’,l’ = {} with i  i’ and l  l’. 

 
(2) (si, tl)  Zi,l  

 

We construct a function f~ , which has on the area Zi,l  the constant function value yi,l: 
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                                                       0)t,s(f~   else. 
 

So f~ looks like: 
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with )t,s(1A = 1 if (s,t)  A and )t,s(1A = 0 else. 
 

The regression function jf~  we get analogous to the two dimensional case: 
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Using the same partition (Zi,l), we need to evaluate the integral above only once if we save the 

coefficients 2k,1k,i
j

a .   
 
If the support of f is compact, we must only take the following k1,k2  Z  in account:   
 

{(k1, k2) | supp {}G)kt2,ks2( 2
j

1
j  } . 

 
If the support of f is not compact, we use only the following k1,k2 Z in the summation 
above:  
                          {(k1, k2) |  |)kt2,ks2(| 2

j
1

j  for (s,t)  G}  
 
With a useful   > 0. In many examples we saw, that the method is relatively insensitive and 
even with scaling functions without compact support we need not many basis coefficients for 
a good regression. Using an equidistant grid, we get the si and tl with  
 
 

si = s1 + (i-1)hs , for 1≤ i ≤ n1 
and 

tl = t1 + (l-1)ht  , for 1≤ l ≤ n2 , 
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Here you see the grid an Zi,l in a graph: 
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Figure 5: Scheme for the grid 
 

Now the Zi,l are: 
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The formula for the coefficients j
k,k 21

f~  has then the following form: 
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Example 2: 
We generated points by simulation measurements (formula (2)) and used the function  
 

                                            
22 tse)t,s(f  . 

 
 
We generated 100 function values over the area [-3, 3]2 at equidistant points. The error was 
chosen normal distributed with mean 0 and the standard deviation 0.001. 
 
 
We set: 

n1 = n2 = 10; 
11 ts  = -3; 

21 nn ts   = 3. 
 
 
Here you see the points (si, tl, yi,l) together with the graph of f:  
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Figure 6: Graph from f and the regression points 

 
 
We use the Daubechies wavelet of order 7. Here is the graph of the one dimensional scaling 
function:  
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Figure 7: Graph of the scaling function from the Daubechies wavelet  

 
 
And here is the graph of the scaling function with two arguments:  
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Figure 8: Graph of the scaling function with two arguments from the Daubechies wavelet  

 
 

 
Here is the graph of the approximation function at resolution  j = 0:  
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Figure 9: Graph of the approximation function for j = 0  
 
 

The graph of the approximation function at resolution  j = 1:  
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Figure 10: Graph of the approximation function for j = 1  
 

The graph of the details d0 (= f1 – f0):   
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Figure 11: Graph of the Details for j = 0  
 

 
 
The indices k1 and k2 were chosen from -11ÿ2j to 3ÿ2j .We calculate the mean quadratic error at 
both resolutions: 
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